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“Splicing and Dicing” assignment inspired by an assignment by Owen Astrachan entitled “DNA Splicing.”
Thanks to Julie Zelenski, Katherine Erdman, Max Darling, Maya Ziv, Richard Lin, and Trip Master for their input on this assignment!

Linked structures  are a fundamentally  different  way of  encoding sequences  than the array-based ap-
proaches you worked with on Assignment 5 and Assignment 6. This assignment is all about manipulating,
traversing, and exploring linked structures. It’s a two-parter. The first part is a hybrid coding/debugging
exercise where you’ll work the debugger to escape from a maze. The second part is a coding exercise in
which you’ll use linked lists to manipulate DNA sequences.

Due Friday, March 6th at 11:30AM.
You are welcome to work in pairs on this assignment.

You know the drill – make consistent, slow, steady progress on this assignment rather than doing every-
thing at the last minute. Here’s our recommended timeline:

• Aim to complete The Labyrinth! within two days of this assignment going out.

• Aim to complete Splicing and Dicing within seven days of this assignment going out.

A reminder: you cannot use late days on the assignment that goes out after this one, so if you do end up
using late days here, you will cut into the time you would otherwise have to work on the final assignment.
Use late days if you need to, but be careful not to fall too far behind.



Problem One: The Labyrinth!
You have been trapped in a labyrinth, and your only hope to escape is to cast the magic spell that will free
you from its walls. To do so, you will need to explore the labyrinth to find three magical items:

• The Spellbook ), which contains the spell you need to cast to escape.(📕), which contains the spell you need to cast to escape.
• The Potion (⚗), containing the arcane compounds that power the spell.

• The Wand (⚚), which concentrates your focus to make the spell work.

Once you have all three items, you can cast the spell to escape to safety.

This is, of course, no ordinary maze. It’s a pointer maze. The maze consists of a collection of objects of
type MazeCell, where MazeCell is defined here:

struct MazeCell {                                                              
    string whatsHere; // One of "", "Spellbook", "Potion", or "Wand"           
    MazeCell* north;  // The cell north of us, or nullptr if we can't go north.
    MazeCell* south;                                                           
    MazeCell* east;                                                            
    MazeCell* west;                                                            
};                                                                             

For example, to the right is a 4 × 4 labyrinth. We’ve marked your start-
ing position with a smiley face and the positions of of the three items
with similarly cute emojis. The  MazeCell you begin at would have its
north,  south,  east, and  west pointers pointing at the  MazeCell ob-
jects located one step in each of those directions from you. On the other
hand, the MazeCell containing the book would have its north, east, and
west pointers set  to  nullptr,  and only its  south pointer would point
somewhere (specifically, to the cell in the bottom-left corner).

Each  MazeCell has a variable named  whatsHere that  indicates what
item, if any, is at that position. Empty cells will have whatsHere set to
the empty string. The cells containing the Spellbook, Potion, or Wand
will have those fields set to  "Spellbook",  "Potion", and  "Wand", re-
spectively, with that exact capitalization.

If you were to find yourself in this labyrinth, you could walk around a bit to find the items you need to
cast the escape spell. There are many paths you can take; here’s three of them:

ESNWWNNEWSSESWWN    SWWNSEENWNNEWSSEES    WNNEWSSESWWNSEENES

Each path is represented as a sequence of letters (N for north, W for west, etc.) that, when followed from
left to right, trace out the directions you’d follow. For example, the first sequence represents going east,
then south (getting the Potion), then north, then west, etc. Trace though those paths and make sure you
see how they pick up all three items.

There are three milestones to this problem. The first one is a coding problem, and the second two are de-
bugger exercises. We strongly recommend completing them in the order in which they appear, as they
build on top of one another.

2 / 13



Milestone 1: Check Paths to Freedom
Your first task is to write a function that, given a cell in a maze and a path, checks whether that path is le-
gal and picks up all three items. Specifically, in the file Labyrinth.cpp, implement the function

bool isPathToFreedom(MazeCell* startLocation, const string& path);

This function takes as input your starting location in the maze and a string made purely from the charac-
ters 'N', 'S', 'E', and 'W', then returns whether that path lets you escape from the maze.

A path lets you escape the maze if (1) the path is legal, in the sense that it never takes a step that isn’t per-
mitted in the current MazeCell, and (2) the path picks up the Spellbook, Wand, and Potion. The order in
which those items are picked up is irrelevant, and it’s okay if the path continues onward after picking all
the items up.

You can assume that startLocation is not a null pointer (you do indeed begin somewhere). However, if
the input string contains any invalid characters (that is, characters other than 'N', 'S', 'E', or 'W'), you
should use the error() function to report an error.

To summarize:

1. Implement the isPathToFreedom function in Labyrinth.cpp.

2. Test your code thoroughly using our provided tests. (If you’d like to write tests of your own,
you’re welcome to do so, though it’s not required here.)

Some notes on this problem:

• Every maze cell’s  whatsHere field will contain exactly one of the four options indicated earlier
("",  "Spellbook",  "Wand", and "Potion"). You don’t need to worry about the case where the
maze contains items other than these. We could have conceivably used an enumerated type to rep-
resent this (see Chapter 1.6 of the textbook for more on enumerated types), but figured it would
be easier to just use strings here.

• Your code should work for a  MazeCell from any possible maze, not just the one shown on the
previous page.

• Although in the previous picture the maze was structured so that if there was a link from one cell
to another going north there would always be a link from the second cell back to the first going
south (and the same for east/west links), you should not assume this is the case in this function.
Then again, chances are you wouldn’t need to assume this.

• You shouldn’t need to allocate any new MazeCell objects in the course of solving this problem.
Feel free to declare variables of type MazeCell*, but don’t use the new keyword. After all, your
job is to check a path in an existing maze, not to make a new maze.
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Milestone 2: Escape from Your Personal Labyrinth
Your next task is to escape from a labyrinth that’s specifically constructed for you (and your partner, if
you’re working in a pair). The starter code we’ve provided will use your name(s) to build you a personal-
ized labyrinth. By “personalized,” we mean “no one else in the course is going to have the exact same
labyrinth as you.” Your job is to figure out a path through that labyrinth that picks up all the three items,
allowing you to escape.

Open the file LabyrinthEscape.cpp and you’ll see three constants. The first one, kYourName, is a spot
for your name (or your name and your partner’s name, if you’re working in a pair). Right now, it’s marked
with a TODO message. Edit this constant so that it contains your name(s).

Scroll  down to the  first test  case in  LabyrinthEscape.cpp.  This test  case generates a personalized
labyrinth based on the kYourName constant and returns a pointer to one of the cells in that maze. It then
checks whether the constant  kPathOutOfNormalMaze is a sequence that will let you escape from the
maze. Right now, kPathOutOfNormalMaze is a TODO message, so it’s not going to let you escape from the
labyrinth. You’ll need to edit this string with the escape sequence once you find it.

To come up with a path out of the labyrinth, use the debugger! Set a breakpoint at the indicated line in
the first test case. Launch the demo app with the debugger enabled and hit “Run Tests.” When you do,
you should see the local variables window pop up, along with the contents of startLocation, which is
the MazeCell where we’ve dropped you into the labyrinth. Clicking the dropdown triangle in the debug-
ger window will let you read the contents of the whatsHere field of startLocation (it’ll be empty), as
well as the four pointers leading out of the cell.

Depending on your maze, you may find yourself in a position where you can move in all four cardinal di-
rections, or you may find that you can only move in some of them. The pointers in directions you can’t go
are all equal to nullptr, which will show up as 0x0 in the debugger window. The pointers that indicate
directions you can go will all have dropdown arrows near them. Clicking one of these arrows will show
you the MazeCells reachable by moving in the indicated directions. You can navigate the maze further by
choosing one of those dropdown arrows, or you could back up to the starting maze cell and explore in
other directions. It’s really up to you!

Draw a lot of pictures. Grab a sheet of paper and map out the maze you’re in. There’s no guarantee
where you begin in the maze – you could be in the upper-left corner, dead center, etc. The items are scat-
tered randomly, and you’ll need to seek them out. Once you’ve mapped out the maze, construct an escape
sequence and stash it in the constant  kPathOutOfNormalMaze, then see if you pass the first test. If so,
fantastic! You’ve escaped! If not, you have lots of options. You could step through your isPathToFree-
dom function to see if one of the letters you entered isn’t what you intended and accidentally tries to move
in an illegal direction. Or perhaps the issue is that you misdrew your map and you’ve ended up some-
where without all the items. You could alternatively set the breakpoint at the test case again and walk
through things a second time, seeing whether the picture of the maze you drew was incorrect.

To summarize, here’s what you need to do:

1. Edit the constant kYourName at the top of LabyrinthEscape.cpp with a string containing
your name and your partner’s name if you’re working in a group.  Don’t skip this step! If
you forget to do this, you’ll be solving the wrong maze!

2. Set a breakpoint at the indicated line in the first test case in LabyrinthEscape.cpp, run
the program in debug mode, and choose “Run Tests” to activate the breakpoint.

3. Map out the maze on a sheet of paper and find where all the items are. Once you’re done,
stop the running program.

4. Find a path that picks up all three items and edit the constant kPathOutOfNormalMaze at
the top of LabyrinthEscape.cpp with that path. Run the test a second time with the de-
bugger turned off to confirm you’ve escaped.
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Milestone 3: Escape from Your Personal Twisty Labyrinth
Now, let’s make things a bit more interesting. In the previous section, you escaped from a labyrinth that
nicely obeyed the laws of geometry. The locations you visited formed a nice grid, any time you went
north you could then go back south, etc.

In this section, we’re going to relax these constraints, and you’ll
need to find your way out of trickier mazes that look like the
one shown to the right.

This maze is stranger than the previous one you explored. For
example, you’ll notice that these MazeCells are no longer in a
nice rectangular grid where directions of motion correspond to
the natural cardinal directions. There’s a MazeCell here where
moving north and then north again will take you back where
you started. In one spot, if you move west, you have to move
south to  return  to  where  you  used to  be.  In  that  sense,  the
names “north,” “south,” “east,” and “west” here no longer have
any nice  geometric  meaning;  they’re  just  the  names  of  four
possible exits from one MazeCell into another.

The one guarantee you do have is that if you move from one MazeCell to a second, there will always be a
direct link from the second cell back to the first. It just might be along a direction of travel that has no re-
lation to any of the directions you’ve taken so far.

The second test case in LabyrinthEscape.cpp contains code that generates a twisty labyrinth personal-
ized with the kYourName constant. As before, you’ll need to find a sequence of steps that will let you col-
lect the three items you need to escape.

In many regards, the way to complete this section is similar to the way to complete the previous one. Set a
breakpoint in the indicated spot in the second test case and use the debugger to explore the maze. Unlike
the previous section, though, in this case you can’t rely on your intuition for what the geometry of the
maze will look like. For example, suppose your starting location allows you to go north. You might find
yourself in a cell where you can then move either east or west. One of those directions will take you back
where you started, but how would you know which one?

This is where memory addresses come in. Internally, each object in C++ has a memory address associ-
ated with it. Memory addresses typically are written out in the form @0xsomething, where something is
the address of the object. You can think of memory addresses as sort of being like an “ID number” for an
object – each object has a unique address, with no two objects having the same address. When you pull up
the debugger view of a maze cell, you should see the MazeCell memory address under the Value column.

For example, suppose that you’re in a maze and your starting location has address 0x7fffc8003740 (the
actual number you see will vary based on your OS), and you can move to the south (which ways you can
go are personalized to you based on your name, so you may have some other direction to move). If you
expand out the dropdown for the south pointer, you’ll find yourself at some other MazeCell. One of the
links out of that cell takes you back where you’ve started, and it’ll be labeled 0x7fffc8003740. Moving
in that direction might not be productive – it just takes you back where you came from – so you’d proba-
bly want to explore other directions to search the maze.

It’s going to be hard to escape from your maze unless you draw lots of pictures to map out your surround-
ings. To trace out the maze that you’ll be exploring, we recommend diagramming it on a sheet of paper as
follows. For each MazeCell, draw a circle labeled with the memory address, or, at least the last five char-
acters of that memory address. (Usually, that’s sufficient to identify which object you’re looking at). As
you explore, add arrows between those circles labeled with which direction those arrows correspond to.
What you have should look like the picture above, except that each circle will be annotated with a mem-
ory address. It’ll take some time and patience, but with not too much effort you should be able to scout
out the full maze. Then, as before, find an escape sequence from the maze!
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To recap, here’s what you need to do:

1. Set a breakpoint at the indicated line in the second test case in LabyrinthEscape.cpp, run
the demo app in debug mode and choose “Run Tests” to activate the breakpoint.

2. Map out the twisty maze on a sheet of paper and find where all the items are and how the
cells link to each other. Once you’re done, stop the running program.

3. Find  an escape sequence,  and  edit  the constant  kPathOutOfTwistyMaze at  the  top of
LabyrinthEscape.cpp with  that  constant.  Run the tests  again  – this  time without  the
breakpoint – and see if you’ve managed to escape!

Some notes on this problem:

• The memory addresses of objects are not guaranteed to be consistent across runs of the pro-
gram. This means that if you map out your maze, stop the running program, and then start the
program back up again, you are not guaranteed that the addresses of the MazeCells in the maze
will be the same. The shape of the maze is guaranteed to be the same, though. If you do close
your program and then need to explore the maze again, you may need to relabel your circles as
you go, but you won’t be drawing a different set of circles or changing where the arrows link.

• You are guaranteed that if you follow a link from one MazeCell to another, there will always be a
link from that second MazeCell back to the first, though the particular directions of those links
might be completely arbitrary. That is, you’ll never get “trapped” somewhere where you can move
one direction but not back where you started.

• Attention to detail is key here – different MazeCell objects will always have different addresses,
but those addresses might be really similar to one another. Make sure that as you’re drawing out
your diagram of the maze, you don’t include duplicate copies of the same MazeCell.

• The maze you’re exploring might contain loops or cases where there are multiple distinct paths
between different locations. Keep this in mind as you’re exploring or you might find yourself go-
ing in circles!

• Remember that you don’t necessarily need to map out the whole maze. You only need to explore
enough of it to find the three items and form a path that picks all of them up.

At this point, you have a solid command of how to use the debugger to analyze linked structures. You
know how to recognize a null pointer, how to manually follow links between objects, and how to recon-
struct the full shape of the linked structure even when there’s bizarre and unpredicable cross-links be-
tween them. We hope you find these skills useful as you continue to write code that works on linked lists
and other linked structures!
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Problem Two: Splicing and Dicing
DNA strands are made up of smaller units called nucleotides. There are four different nucleotides present
in DNA, which are represented by the letters A, C, G, and T. Any DNA strand, therefore, can be thought
of as linked structure consisting of the nucleotides that make up that strand, in order. In software, we
might represent a nucleotide as a doubly-linked list made of individual units that look like this:

struct Nucleotide {                     
    char value; // 'A', 'C', 'G', or 'T'
    Nucleotide* next;                   
    Nucleotide* prev;                   
};                                      

For example, the DNA sequence TAGCAT would be represented as follows:

Although they aren’t pictured here, the prev pointer of the first T and the next pointer of the last T would
each be set to nullptr. For visual simplicity, we’re going to leave those pointers out of future pictures as
well, but it doesn’t hurt to draw them in!

There are four milestones in this part of the assignment, and they’re spelled out over the next pages.
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Milestone One: Implement Core Functions
Your first task is to write functions for manipulating existing DNA sequences. First, write a function

void deleteNucleotides(Nucleotide* dna);

that takes as input a pointer to a DNA strand, then deletes all the memory used by the nucleotides in that
strand. It’s possible that the input pointer is nullptr if the DNA strand is empty, in which case this func-
tion should do nothing.

Next, write this function:

string fromDNA(Nucleotide* dna);

This function takes as input a sequence of nucleotides, then returns a string representation of the DNA
strand. For example, calling fromDNA on the dna pointer shown below would return "GTTCAGT":

With that in mind, here’s your first milestone:

Milestone 1: Implement Core Functions 

1. Add at two custom test cases to  SplicingAndDicing.cpp, one for each of the functions
mentioned above.

2. Implement the deleteNucleotides function and test it thoroughly.

3. Implement the fromDNA function and test it thoroughly.

Some notes on this problem:

• Draw pictures! Get out a pencil and paper and trace out what operations you want to perform on
your linked lists before you write any code. Then, as you’re writing up the code, refer back to your
pictures to make sure each line of code does what you want it to do.

• If you leave a pointer uninitialized in C++, it  does  not default to  nullptr and instead points
somewhere random. Using a pointer like this will almost certainly crash your program immedi-
ately. It’s a good idea to explicitly set pointers you don’t want pointing at anything to nullptr.

• Your implementations of these functions should run in time O(n). If you’re able to pass the pro-
vided stress tests, with each one taking at most a few seconds, you should be in good shape.

• These functions must work correctly on large inputs. This likely means that you won’t be able to
implement them recursively, since doing so would lead to stack overflows on long strands.

• You can assume these functions always take in a pointer to the first nucleotide in the strand (or
nullptr if the strand is empty). You don’t need to handle pointers into the middle of lists.

• You should not allocate any memory with  new in the course of implementing these functions,
since you’re not actually creating any new nucleotides. Feel free to declare variables of type Nu-
cleotide* (remember that creating a pointer is separate from requesting space using the new op-
erator), but don’t use the new operator.

• You must not use any of the container types (e.g. Vector,  HashSet, etc.) in the your solutions.
See if you can do this purely using linked lists.
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Milestone Two: Construct New Sequences
Your next task is to write a function

Nucleotide* toStrand(const string& dna);

This function takes in a string representing a DNA strand and returns a chain of Nucleotides encoding
that DNA strand. You can think of it as the inverse of the fromDNA function: fromDNA takes in a Nucleo-
tide* and returns a string, while toStrand takes in a string and returns a Nucleotide*.

For example, calling toStrand("TAGCAT") should return the a pointer to the first nucleotide in the DNA
strand shown below:

Here’s what you need to do:

Milestone 2: Construct New Sequences

1. Add a custom test case to SplicingAndDicing.cpp to test the toStrand function.

2. Implement toStrand and test it thoroughly.

Some notes on this problem:

• Remember that the linked list you produce should be a doubly-linked list. This will require you to
do some extra wiring in your toStrand function.

• Don’t be afraid to set breakpoints in test cases and pull up the debugger if you need to figure out
where a crash comes from or why your code isn’t working. After working through the labyrinth
exercises, you should have all the tools you need to reconstruct the state of memory on a sheet of
paper. More generally, we recommend that you never run your program using the regular “run”
button and always run with the debugger turned on so that if anything bad happens, you can poke
around and see where things went wrong.

• Your implementation of this function should run in time O(n). If you’re able to pass the provided
stress tests, with each one taking at most a few seconds, you should be in good shape.

• This function must work correctly on large inputs. This likely means that you won’t be able to im-
plement it recursively, since doing so would lead to stack overflows on long strands.

• You must not use any of the container types (e.g. Vector, HashSet, etc.) in the course of solving
this problem. See if you can do this purely using linked lists.
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Milestone Three: Implement Searching
Your next task is to implement a function

Nucleotide* findFirst(Nucleotide* dna, Nucleotide* target);

that searches for a copy of the strand given by  target inside the strand given by  dna, then returns a
pointer to the first cell in the match. For example, given these DNA strands, findFirst should return a
pointer to the third nucleotide in the dna list.

(As before, we aren’t drawing the null pointers that appear as the next and prev pointers of the first and
last elements of the DNA strands.)

If the sequence given by target doesn’t appear in dna, this function should return nullptr to indicate
that the sequence wasn’t found.

Here’s the requirements for this milestone:

Milestone 3: Implement Searching

1. Add at least one custom test case to SplicingAndDicing.cpp for findFirst.

2. Implement the findFirst function and test it thoroughly.

Some notes on this problem:

• The target sequence could be empty, in which case this function should report that target ap-
pears at the start of dna. This is similar to what you’d do if you wanted to search for the empty
string inside of another string: it always exists, and it’s always at the front.

• You can assume the Nucleotide objects that make up the target sequence are different objects
than the Nucleotide objects that make up dna. That is, the target pointer doesn’t point into the
middle of dna. More generally, you can assume the pointers passed into this function always point
at the start of the lists in question.

• You should not allocate any memory with new in the course of implementing findFirst, since
you’re not actually creating any new nucleotides. Feel free to declare variables of type Nucleo-
tide* (remember that creating a pointer is separate from using the new keyword), but don’t use
the new operator.

• Your code should be efficient enough to pass the test cases that we’ve bundled with the starter
files, but aside from that we won’t set any specific big-O target runtime.

• Your functions should work on input sequences of any length, including very long sequences. This
will likely preclude the use of recursion here, since you might run out of stack space on those
large sequences.

• You must not use any of the container types (e.g. Vector, HashSet, etc.) in the course of solving
this problem. See if you can do this purely using linked lists.
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Milestone Four: Implement Splicing
Your last task is to write a function

bool spliceFirst(Nucleotide*& dna, Nucleotide* target);

that takes as input two DNA strands. The first strand, dna, is the DNA sequence to search. The second
strand, target, is a specific sequence to chop out of the DNA strand. Your function should then find the
first copy of target inside of dna, then edit the dna strand by removing that sequence in its entirety. If
that sequence doesn’t exist, this function should return false to indicate that nothing was removed.

For example, suppose we have these strands:

As before, we aren’t drawing the null pointers that appear as the next and prev pointers of the first and
last elements of the DNA strands. Calling spliceFirst(dna, target) would give this result:

The first copy of  "CAG" was deleted from dna, though the second copy of  "CAG" still exists;  splice-
First only removes the first copy of target. On the other hand, suppose we have these sequences:

Calling spliceFirst(dna, target) would result in the following:

Notice that dna has changed to point later in the sequence, since we deleted the beginning of the strand.
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Given this, here’s your next milestone:

Milestone 4: Implement Splicing

1. Add at least one custom test for the spliceFirst function.

2. Implement the spliceFirst function and test it thoroughly.

Some notes on this problem:

• Your function should leave the original strand unchanged except for the removed section and pos-
sibly the  Nucleotides that appear just before and just after that section. In other words, you
should only make local modifications to the strand rather than, say, allocating a new strand or
changing which characters are stored in which Nucleotide objects.

• You can assume that Nucleotide objects that make up the target sequence are different objects
than the Nucleotide objects that make up dna. That is, the target pointer doesn’t point into the
middle of dna.

• Your implementation of spliceFirst should not leak any memory. In particular, if you remove
any nucleotides from the DNA strand, you should be sure to delete them.

• You may have noticed that the dna parameter is passed by reference (i.e.  Nucleotide*& rather
than  Nucleotide*).  This is  because you may need to  change where the  dna pointer  points;
specifically, if you remove the first nucleotide from the strand, you will need to reassign dna to
point after the removed sequence. Be careful not to change where dna is pointing unless you’re re-
moving something from the front of the sequence.

• The target sequence could be empty, in which case this function should simulate removing noth-
ing from the DNA strand. Specifically, your function should leave the DNA strand unmodified
and return true to indicate that, indeed, zero nucleotides were removed from it.

• You should not allocate any memory using  new in the course of implementing  spliceFirst,
since you’re not actually creating any new nucleotides. Feel free to declare variables of type Nu-
cleotide* (remember that creating a pointer is separate from allocating memory using new), but
don’t use the new operator.

• As before, you should not implement this function recursively because we might be running huge
DNA sequences through it and you won’t have the stack space to pull this off.

• If, in the course of coding this one up, you start seeing crashes or bugs in fromDNA, deleteNu-
cleotides, or findFirst, it could mean either that there’s a bug in your spliceFirst function
that caused the list to be wired improperly or that there was a lurking issue in one of those earlier
functions that accidentally sneaked past the tests from the earlier milestones. In other words, don’t
immediately assume that one of the earlier functions is the culprit; investigate  spliceFirst as
well to make sure that it didn’t leave the wiring between the nucleotides in a bad state.

• The debugger is your friend! Don’t hesitate to set breakpoints in test cases or step through your
code if you find any issues with your program; this is a great way to see what your code is doing.
You learned how to sketch out how linked structures look in memory when working through the
labyrinth escape, and those same skills will be useful to you here.

• Your code should be efficient enough to pass the test cases that we’ve bundled with the starter
files, but aside from that we won’t set any specific big-O target runtime.

• You must not use any of the container types (e.g. Vector, HashSet, etc.) in the course of solving
this problem. See if you can do this purely using linked lists.
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(Optional) Problem Three: Extensions
This assignment is all about linked structures, and there’s plenty of room for you to do Fun and Exciting
Things with the topics we’ve covered here. Here’s some thoughts to help get you started, but the sky’s the
limit here!

• The Labyrinth!: Our provided code generates random mazes using combinations of several fa-
mous algorithms and data structures. (The normal maze is generated using Kruskal’s algorithm and
a disjoint-set forest, the twisted maze is generated using an Erdős–Rényi random graph with con-
nectivity guaranteed via breadth-first search, and the starting locations are chosen by a procedure
that uses the Floyd-Warshall algorithm as substep.) There are lots of fairly accessible articles on-
line about how to generate random mazes in other ways. For example, you can use a randomized
depth-first search to build mazes with lots of long, twisted hallways, or randomized Prim’s algo-
rithm to build mazes that branch out from a central location. Wilson’s algorithm produces mazes
that are sampled uniformly at random from the space of all possible mazes. Play around with
these and see what you find!

Other things you could consider: could you build a visualizer that draws the maze given a pointer
to your starting location? Or could you write a program that automatically finds the shortest paths
out of a maze?

• Splicing and Dicing: DNA often comes in the form of plasmids, in which the DNA links in a ring
rather than having a definitive beginning and end. Adapt the functions you wrote earlier to work in
the case where the input strands are plasmids in addition to regular DNA strands.

There are a number of algorithms you can use to implement findFirst in time O(m + n), where
m is the length of the DNA strand / plasmid to process and n is the length of the target sequence.
(This is as fast as you can make this algorithm – anything shorter than this means that you can’t
even read the whole DNA sequence and target, something you’d need to do in the worst case).
The  Knuth-Morris-Pratt (KMP) algorithm guarantees this worst-case performance. The  Rabin-
Karp algorithm uses hash functions in a really clever way that gives an average-case performance
of O(m + n), though with a worst-case performance of O(mn). Explore these algorithms and see
what you find!

Submission Instructions
Once you’ve autoindented your code so that it looks beautiful and worked through the Assignment Sub-
mission Checklist, submit the following files on Paperless, plus any other files you modified when writing
up extensions:

• Labyrinth.cpp.

• LabyrinthEscape.cpp.

• SplicingAndDicing.cpp.

And that’s it! You’re done! You’ve gotten comfortable working with linked structures and are now much
more comfortable working with the debugger. Nicely done!

Good luck, and have fun!
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	There are three milestones to this problem. The first one is a coding problem, and the second two are debugger exercises. We strongly recommend completing them in the order in which they appear, as they build on top of one another.
	Milestone 1: Check Paths to Freedom
	bool isPathToFreedom(MazeCell* startLocation, const string& path);
	This function takes as input your starting location in the maze and a string made purely from the characters 'N', 'S', 'E', and 'W', then returns whether that path lets you escape from the maze.
	A path lets you escape the maze if (1) the path is legal, in the sense that it never takes a step that isn’t permitted in the current MazeCell, and (2) the path picks up the Spellbook, Wand, and Potion. The order in which those items are picked up is irrelevant, and it’s okay if the path continues onward after picking all the items up.
	You can assume that startLocation is not a null pointer (you do indeed begin somewhere). However, if the input string contains any invalid characters (that is, characters other than 'N', 'S', 'E', or 'W'), you should use the error() function to report an error.
	To summarize:
	1. Implement the isPathToFreedom function in Labyrinth.cpp.
	2. Test your code thoroughly using our provided tests. (If you’d like to write tests of your own, you’re welcome to do so, though it’s not required here.)
	Milestone 2: Escape from Your Personal Labyrinth
	1. Edit the constant kYourName at the top of LabyrinthEscape.cpp with a string containing your name and your partner’s name if you’re working in a group. Don’t skip this step! If you forget to do this, you’ll be solving the wrong maze!
	2. Set a breakpoint at the indicated line in the first test case in LabyrinthEscape.cpp, run the program in debug mode, and choose “Run Tests” to activate the breakpoint.
	3. Map out the maze on a sheet of paper and find where all the items are. Once you’re done, stop the running program.
	4. Find a path that picks up all three items and edit the constant kPathOutOfNormalMaze at the top of LabyrinthEscape.cpp with that path. Run the test a second time with the debugger turned off to confirm you’ve escaped.
	Milestone 3: Escape from Your Personal Twisty Labyrinth
	1. Set a breakpoint at the indicated line in the second test case in LabyrinthEscape.cpp, run the demo app in debug mode and choose “Run Tests” to activate the breakpoint.
	2. Map out the twisty maze on a sheet of paper and find where all the items are and how the cells link to each other. Once you’re done, stop the running program.
	3. Find an escape sequence, and edit the constant kPathOutOfTwistyMaze at the top of LabyrinthEscape.cpp with that constant. Run the tests again – this time without the breakpoint – and see if you’ve managed to escape!
	Milestone One: Implement Core Functions
	Milestone 1: Implement Core Functions
	1. Add at two custom test cases to SplicingAndDicing.cpp, one for each of the functions mentioned above.
	2. Implement the deleteNucleotides function and test it thoroughly.
	3. Implement the fromDNA function and test it thoroughly.
	You should not allocate any memory with new in the course of implementing these functions, since you’re not actually creating any new nucleotides. Feel free to declare variables of type Nucleotide* (remember that creating a pointer is separate from requesting space using the new operator), but don’t use the new operator.
	Milestone Two: Construct New Sequences
	Milestone 2: Construct New Sequences
	1. Add a custom test case to SplicingAndDicing.cpp to test the toStrand function.
	2. Implement toStrand and test it thoroughly.
	Milestone Three: Implement Searching
	Your next task is to implement a function
	Nucleotide* findFirst(Nucleotide* dna, Nucleotide* target);
	that searches for a copy of the strand given by target inside the strand given by dna, then returns a pointer to the first cell in the match. For example, given these DNA strands, findFirst should return a pointer to the third nucleotide in the dna list.
	
	(As before, we aren’t drawing the null pointers that appear as the next and prev pointers of the first and last elements of the DNA strands.)
	If the sequence given by target doesn’t appear in dna, this function should return nullptr to indicate that the sequence wasn’t found.
	Here’s the requirements for this milestone:
	Milestone 3: Implement Searching
	1. Add at least one custom test case to SplicingAndDicing.cpp for findFirst.
	2. Implement the findFirst function and test it thoroughly.
	Some notes on this problem:
	You should not allocate any memory with new in the course of implementing findFirst, since you’re not actually creating any new nucleotides. Feel free to declare variables of type Nucleotide* (remember that creating a pointer is separate from using the new keyword), but don’t use the new operator.
	Your code should be efficient enough to pass the test cases that we’ve bundled with the starter files, but aside from that we won’t set any specific big-O target runtime.
	Your functions should work on input sequences of any length, including very long sequences. This will likely preclude the use of recursion here, since you might run out of stack space on those large sequences.
	You must not use any of the container types (e.g. Vector, HashSet, etc.) in the course of solving this problem. See if you can do this purely using linked lists.
	
	Milestone Four: Implement Splicing
	Milestone 4: Implement Splicing
	1. Add at least one custom test for the spliceFirst function.
	2. Implement the spliceFirst function and test it thoroughly.

